getCor()
calculates correlation coefficients using either
pearson
or bicor
methods. Calculations can be done between
columns of a single matrix or between two vectors or matrices.
Usage
getCor(
x,
y = NULL,
transpose = FALSE,
corType = c("bicor", "pearson"),
maxPOutliers = 0.1,
robustY = TRUE,
verbose = TRUE
)
Arguments
- x
A
numeric vector
ormatrix
.x
must be amatrix
ify
is null.- y
A
numeric vector
ormatrix
. If null, correlations will be calculated for columns ofx
.- transpose
A
logical(1)
specifying whether to transpose thematrix
.- corType
A
character(1)
indicating which correlation statistic to use in the calculation. Potential values includepearson
andbicor
.- maxPOutliers
A
numeric(1)
specifying the maximum percentile that can be considered outliers on each side of the median for thebicor
statistic.- robustY
A
logical(1)
indicating whether to use robust calculation fory
for thebicor
statistic.FALSE
is recommended ify
is a binary variable.- verbose
A
logical(1)
indicating whether messages should be printed.
Details
The first input argument can be optionally transposed. The correlation
calculations are performed by WGCNA::cor()
and WGCNA::bicor()
.
See also
getModules()
to build a comethylation network and identify modules of comethylated regions.getDendro()
andplotDendro()
to generate and visualize dendrograms.plotHeatmap()
to visualize correlations between samples and modules.getMEtraitCor()
to calculate pairwise correlation coefficients and p-values between module eigennode values.
Examples
if (FALSE) {
# Get Comethylation Modules
modules <- getModules(methAdj, power = sft$powerEstimate, regions = regions,
corType = "pearson", file = "Modules.rds")
# Examine Correlations between Modules
MEs <- modules$MEs
moduleDendro <- getDendro(MEs, distance = "bicor")
plotDendro(moduleDendro, labelSize = 4, nBreaks = 5,
file = "Module_ME_Dendrogram.pdf")
moduleCor <- getCor(MEs, corType = "bicor")
plotHeatmap(moduleCor, rowDendro = moduleDendro, colDendro = moduleDendro,
file = "Module_Correlation_Heatmap.pdf")
moduleCorStats <- getMEtraitCor(MEs, colData = MEs, corType = "bicor",
robustY = TRUE,
file = "Module_Correlation_Stats.txt")
# Examine Correlations between Samples
sampleDendro <- getDendro(MEs, transpose = TRUE, distance = "bicor")
plotDendro(sampleDendro, labelSize = 3, nBreaks = 5,
file = "Sample_ME_Dendrogram.pdf")
sampleCor <- getCor(MEs, transpose = TRUE, corType = "bicor")
plotHeatmap(sampleCor, rowDendro = sampleDendro, colDendro = sampleDendro,
file = "Sample_Correlation_Heatmap.pdf")
# Visualize Module Eigennode Values
plotHeatmap(MEs, rowDendro = sampleDendro, colDendro = moduleDendro,
legend.title = "Module\nEigennode",
legend.position = c(0.37,0.89),
file = "Sample_ME_Heatmap.pdf")
}