Visualize a Module Eigennode - Trait Correlation as a Scatter Plot
Source:R/Explore_Module_Trait_Correlations.R
      plotMEtraitScatter.RdplotMEtraitScatter() takes a vector of module eigennode values
and a vector of continuous sample trait values, generates a scatter
plot, and then saves it as a .pdf. ME and trait must be in the
same order.
Usage
plotMEtraitScatter(
  ME,
  trait,
  color = "#132B43",
  xlim = NULL,
  ylim = NULL,
  nBreaks = 4,
  point.size = 2.5,
  axis.title.size = 20,
  axis.text.size = 16,
  xlab = "Trait",
  ylab = "Module Eigennode",
  save = TRUE,
  file = "ME_Trait_Scatterplot.pdf",
  width = 6,
  height = 6,
  verbose = TRUE
)Arguments
- ME
 A
numericof module eigennode values.MEmust be in the same order astrait.- trait
 A
numericof continuous sample trait values.- color
 A
character(1)giving the color of the points.- xlim
 A
numeric(2)specifying the limits of the x-axis.- ylim
 A
numeric(2)specifying the limits of the y-axis.- nBreaks
 A
numeric(1)giving the number of breaks for both axes.- point.size
 A
numeric(1)indicating the size of the points.- axis.title.size
 A
numeric(1)indicating the size of the title text for both axes.- axis.text.size
 A
numeric(1)specifying the size of the text for both axes.- xlab
 A
character(1)giving the x-axis title.- ylab
 A
character(1)giving the y-axis title.- save
 A
logical(1)indicating whether to save the plot.- file
 A
character(1)giving the file name (.pdf) for the saved plot.- width
 A
numeric(1)specifying the width in inches of the saved plot.- height
 A
numeric(1)specifying the height in inches of the saved plot.- verbose
 A
logical(1)indicating whether messages should be printed.
Details
The values in ME and trait are plotted as points along with a
smoothed line with a shaded 95% confidence interval. The smoothed line is fit
using robust regression as implemented by MASS::rlm(). A ggplot
object is produced and can be edited outside of this function if desired.
See also
getModules()to build a comethylation network and identify modules of comethylated regions.getMEtraitCor()andplotMEtraitCor()to calculate and visualize all ME-trait correlations.plotMEtraitDot()andplotMethTrait()for other methods to visualize a single ME-trait correlation.
Examples
if (FALSE) {
# Get Comethylation Modules
modules <- getModules(methAdj, power = sft$powerEstimate, regions = regions,
                      corType = "pearson", file = "Modules.rds")
# Test Correlations between Module Eigennodes and Sample Traits
MEs <- modules$MEs
MEtraitCor <- getMEtraitCor(MEs, colData = colData, corType = "bicor",
                            file = "ME_Trait_Correlation_Stats.txt")
plotMEtraitCor(MEtraitCor, moduleOrder = moduleDendro$order,
               traitOrder = traitDendro$order,
               file = "ME_Trait_Correlation_Heatmap.pdf")
# Explore Individual ME-Trait Correlations
plotMEtraitDot(MEs$bisque4, trait = colData$Diagnosis_ASD,
               traitCode = c("TD" = 0, "ASD" = 1),
               colors = c("TD" = "#3366CC", "ASD" = "#FF3366"),
               ylim = c(-0.2,0.2), xlab = "Diagnosis",
               ylab = "Bisque 4 Module Eigennode",
               file = "bisque4_ME_Diagnosis_Dotplot.pdf")
plotMEtraitScatter(MEs$paleturquoise, trait = colData$Gran,
                   ylim = c(-0.15,0.15), xlab = "Granulocytes",
                   ylab = "Pale Turquoise Module Eigennode",
                   file = "paleturquoise_ME_Granulocytes_Scatterplot.pdf")
regions <- modules$regions
plotMethTrait("bisque4", regions = regions, meth = meth,
              trait = colData$Diagnosis_ASD,
              traitCode = c("TD" = 0, "ASD" = 1),
              traitColors = c("TD" = "#3366CC", "ASD" = "#FF3366"),
              trait.legend.title = "Diagnosis",
              file = "bisque4_Module_Methylation_Diagnosis_Heatmap.pdf")
}