plotSoftPower() visualizes scale-free topology fit and mean
connectivity for multiple soft power thresholds as a scatterplot, and then
saves it as a .pdf.
Usage
plotSoftPower(
  sft,
  pointCol = "#132B43",
  lineCol = "red",
  nBreaks = 4,
  save = TRUE,
  file = "Soft_Power_Plots.pdf",
  width = 8.5,
  height = 4.25,
  verbose = TRUE
)Arguments
- sft
 A
listproduced bygetSoftPower()with two elements:powerEstimateandfitIndices.- pointCol
 A
character(1)specifying the color of the points.- lineCol
 A
character(1)giving the color of line and label for the estimated soft power threshold for scale-free topology.- nBreaks
 A
numeric(1)specifying the number of breaks used for both axes.- save
 A
logical(1)indicating whether to save the plot.- file
 A
character(1)giving the file name (.pdf) for the saved plot.- width
 A
numeric(1)specifying the width in inches of the saved plot.- height
 A
numeric(1)specifying the height in inches of the saved plot.- verbose
 A
logical(1)indicating whether messages should be printed.
Details
plotSoftPower() is designed to be used in combination with
getSoftPower(). A ggplot object is produced and can be edited
outside of this function if desired.
See also
getRegionMeth(),getPCs(), andadjustRegionMeth()to extract methylation data and then adjust it for the top principal components.getSoftPower()to calculate the best soft-thresholding power and fit indices for scale-free topology.getModules()to build a comethylation network and identify modules of comethylated regions.
Examples
if (FALSE) {
# Get Methylation Data
meth <- getRegionMeth(regions, bs = bs, file = "Region_Methylation.rds")
# Adjust Methylation Data for PCs
mod <- model.matrix(~1, data = pData(bs))
PCs <- getPCs(meth, mod = mod, file = "Top_Principal_Components.rds")
methAdj <- adjustRegionMeth(meth, PCs = PCs,
                            file = "Adjusted_Region_Methylation.rds")
# Select Soft Power Threshold
sft <- getSoftPower(methAdj, corType = "pearson", file = "Soft_Power.rds")
plotSoftPower(sft, file = "Soft_Power_Plots.pdf")
# Get Comethylation Modules
modules <- getModules(methAdj, power = sft$powerEstimate, regions = regions,
                      corType = "pearson", file = "Modules.rds")
}